
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2022

1 Instructor: Daniel Llamocca
TAs: Mike Bowers, Nathan Kelley

Laboratory 2
(Due date: 005: February 16th, 006: February 17th)

OBJECTIVES
✓ Implement a large combinational circuit using the Structural Description in VHDL.
✓ Introduce floating point and fixed point representations for VHDL implementation and Vivado simulation.

VHDL CODING
✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: adder/subtractor.

ACTIVITIES
FIRST ACTIVITY: FLOATING POINT MULTIPLIER (100/100)
▪ Implement the following single-precision (E=8, P=23), floating point multiplier. The circuit only works for ordinary numbers

generating ordinary numbers (e.g.: the cases 𝐴 = 0 or 𝐵 = 0 are not considered by this circuit). Also, overflow and underflow

are not detected by this circuit. The exponents in the circuit are biased exponents, so they always are positive numbers.

▪ Fixed Point Multiplier: This is an unsigned multiplier.

Operands Format (unsigned FX)

Inputs 𝑠1 = 1. 𝑓1 𝑠2 = 1. 𝑓2 [P+1 P]

Output 𝑠12 = 𝑏1𝑏0. 𝑏−1𝑏−2…𝑏−2𝑝 [2P+2 2P]

✓ Truncation: The significand can only have P+2 bits, thus the multiplier output is truncated to P+2 bits (LSBs dropped).

✓ Implementation: Use a simple unsigned combinational multiplier:
Suggestion:
use ieee.std_logic_unsigned.all;

...

signal X, Y: std_logic_vector (23 downto 0);

signal Z: std_logic_vector (47 downto 0);

...

Z <= X*Y;

EE

e1 e2

PP

f1 f2

P+1
s1

P+1
s2

1 1

2P+2

sg

𝑏1𝑏0 . 𝑏−1𝑏−2...𝑏−2𝑝

+

E+1

sg1 sg2

2i

P+2

LZD

P

f

dir

+/-
01. −1 −2... −𝑝

 −1 −2... −𝑝

𝑏1𝑏0 . 𝑏−1𝑏−2...𝑏−𝑝
P+2

E+1

-

E+1 bias

ep

s

ex

unsigned

e1 f1sg1

e2 f2sg2

e fsg

32 bits

FP
mult

32

A B

32

32

M

A

B

M

E

e

in

out sgn

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2022

2 Instructor: Daniel Llamocca
TAs: Mike Bowers, Nathan Kelley

▪ Leading Zero Detector (LZD): This circuit outputs an integer number that indicates the amount of shifting required to
normalize the result of the multiplication. It is also used to adjust the exponent. This circuit is commonly implemented using
a priority encoder. result  [−1, 𝑝]. The result is provided as sign and magnitude. Use the following code: myLZD.vhd.

Operands Bitwidth

Input in: 𝑏1𝑏0. 𝑏−1…𝑏−𝑝 P+2

Outputs
sgn 1
out ⌈log2 𝑃 + 1⌉

✓ The following table details how the expected result is encoded into the signals out and sgn.

result out sgn Actions

[0, 𝑝] 𝑠ℎ ∈ [0, 𝑝] 0
The barrel shifter needs to shift to the left by 𝑠ℎ bits.
Exponent adder/subtractor needs to subtract 𝑠ℎ from the exponent 𝑒𝑝.

−1 𝑠ℎ = 1 1
The barrel shifter needs to shift to the right by 1 bit.
Exponent adder/subtractor needs to add 1 to the exponent 𝑒𝑝.

▪ Barrel shifter 2i: It performs normalization of the final summation. We shift to the left (from 0 to 𝑃 bits) or to the right (1

bit). Use the VHDL code mybarrelshift_gen.vhd with SHIFTTYPE=“LOGICAL” (unsigned input), dir=sgn(LZD).

▪ Exponents adder: We need to add the unbiased exponents: 𝑒𝑝 = 𝑒1 + 𝑒2. This is an unsigned

addition that result in at most E+1 bits. Thus, we can use a simple 2C adder/subtractor, where we

can zero-extend the input operands to E+1 bits.

▪ Exponent adder/subtractor: The input operands are unsigned with E+1 bits: 𝑒𝑝 and out (from LZD, it needs to be zero-

extended to E+1 bits). It can be shown that the result (𝑒𝑥) cannot be negative.

✓ Implementation: you can use a 2C adder/subtractor. Strictly speaking, you need to zero-extend the operands to E+2 bits.

But since the result is always positive, you can use the 2C adder/subtractor with E+1 bits, where the output 𝑒𝑥 is an

unsigned number with E+1 bits.

▪ Bias subtractor: The input operands are unsigned with E+1 bits: 𝑒𝑥 and bias (2𝐸−1 − 1).

✓ Implementation: As in the previous ‘exponent adder/subtractor’, you can use a 2C

adder/subtractor. Strictly speaking, you need to zero-extend the operands to E+2 bits. But since

the output is always positive, you can use E+1 bits in the 2C adder/subtractor, where the output

is an unsigned number with E+1 bits.

✓ Since we are subtracting the 𝑏𝑖𝑎𝑠, it can be shown that the unsigned result only needs a maximum

of E bits. Thus, by dropping the MSB, we get the final exponent 𝑒.

▪ VIVADO DESIGN FLOW FOR FPGAs – NEXYS A7-50T

✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA (e.g.: the XC7A50T-1CSG324 for the Nexys A7-50T).

✓ Write the VHDL code for the 32-bit floating point adder subtractor. Utilize the Structural Description: create a separate

file for the components (adder/subtractor, Barrel Shifter, LZD) and interconnect them all in a top file.
✓ Write the VHDL testbench to test the following cases:

7A09D300  0BEEF000 = 4680A35F

7A09C000  8BEE0000 = C6801080

01800000  FAB80000 = BCB80000

0A800000  FAB80000 = C5B80000

80C00000  FAD00000 = 3C1C0000

✓ Perform Functional Simulation and Timing Simulation of your design. Demonstrate this to your TA.

Note that when testing, it might be very useful to represent the inputs and output in single floating point precision. Or
we might also want to represent the intermediate signals not only as integer numbers but also as fixed point numbers.

You can use the Radix → Real Settings in Vivado simulator window to do so.

▪ Submit (as a .zip file) all the generated files: VHDL code files and VHDL testbench to Moodle (an assignment will be created).

DO NOT submit the whole Vivado Project. Submit (as a .pdf file) this lab sheet signed off by the TA or instructor.

TA signature: ________________________________ Date: __________________________

+/-

E

e1

+/-

E+1

ep

0

E+1 0

E

e2

E+1 0

+/-

ex

+/-

E+1

1

E+1

2E-1-1

E+1

E

e

	Objectives
	VHDL Coding

	Activities
	First Activity: Floating Point Multiplier (100/100)

